Towards an Holistic Understanding of Retail Atmospheric Cues

Introduction

Research on how retail environments can affect consumer behaviour owes much to the work of Kotler (1974). Coining the term ‘atmospherics’, Kotler (1974) argued that buying environments can be purposefully designed to produce specific emotional effects in shoppers, thereby enhancing their purchase probability. However, it was not until Donovan and Rossiter (1982) that research in this area was popularised. In their paper, the authors introduced the Mehrabian-Russell framework (Mehrabian & Russell, 1974), suggesting that it provides a parsimonious description of environments, intervening variables and behaviours that are relevant to retail settings.

While the Mehrabian-Russell framework specifies the relationships between intervening variables and response outcomes, it leaves the issue of an appropriate stimulus taxonomy largely untouched. Drawing guidance from information theory, Mehrabian and Russell (1974) proposed a general measure of environmental stimulation that would be applicable across many physical and social settings, and was termed the information rate, or ‘load’ of an environment. However, since the work of Donovan and Rossiter (1982), researchers have largely explored how individual atmospheric variables such as music (e.g. Milliman, 1982; Morin, Dubé, & Chebat, 2007; Yalch & Spangenberg, 2000), colour (e.g. Bellizzi & Hite, 1992), odour/scent (e.g. Hirsch, 1995; Michon, Chebat, & Turley, 2005; Spangenberg, Crowley, & Henderson, 1996), lighting (e.g. Areni & Kim, 1994), and crowding (e.g. Machleit, Eroglu, & Mantel, 2000) can affect a range of outcomes in retail stores, treating them as independent causal effects. These outcomes have included affective responses (e.g. Bellizzi & Hite, 1992), shopping duration (e.g. Yalch & Spangenberg, 2000), merchandise evaluations (e.g. Areni & Kim, 1994), and shopping satisfaction (e.g. Machleit et al., 2000).

In an extensive review of the atmospherics literature, Turley and Milliman (2000) established five broad categories of atmospheric cues: external cues (e.g. architectural style, surrounding stores); general interior cues (e.g. flooring, lighting, colour schemes, music, aisle width, ceiling composition); layout and design cues (e.g. space design and allocation, grouping, traffic flow, racks and cases); point of purchase and decoration displays (e.g. signs, cards, wall decorations, price displays); and human variables (e.g. employee characteristics, uniforms, crowding, privacy). Across these broad categories, 57 specific cues were identified. There has also been a trend in the literature to attempt a precise categorisation of individual cues in order to manipulate them and understand their effects (Chebat & Dubé, 2000), and to this end, much of the extant research literature has been conducted using experimental designs. A small number of studies have started to examine the interaction between these variables, such as Baker, Parasuraman, Grewal, and Voss (2002) who explored the interaction between store design, employees and music upon perceptions of a retail store.

We suggest that there is a need to examine atmospherics and their effects from a more holistic perspective. When a customer enters a store they do not experience the music in isolation; they do not smell the scent without seeing the colours as well; they do not walk on the floor-covering without feeling the ambient temperature. The typical customer experiences degrees of stimuli as an ongoing, integrated experience. Moreover, it is important that we understand how atmospherics can affect the entire retail process, from the basic dilemma of whether or not to enter a store to the actual purchase decision. Ballantine, Jack, and Parsons (2010) note the difficulty of measuring a multisensory experience using the traditional stimulus-organism-
response of Donovan and Rossiter (1982) due to the extensive set of interactions which need to be examined. For example, the interactions of Turley and Milliman’s (2000) 57 specific cues would create a combinatorial value of $57 \binom{2}{56}$, resulting in more than 29,000 three-way interactions alone.

This study aims to holistically examine how the atmospheric cues encountered in a retail environment contribute to the creation of a retail experience. Moreover, the interaction between these cues, and how they impact on the various stages of retail experience will also be explored.

Methodology

Research was conducted using a within-subjects comparative case study design, with the data being qualitative in nature (Miles & Huberman, 1994). This allowed for the examination of a large range of cues and interactions that would not be possible in an experimental design due to complexity issues. The context in which this study was conducted is the women’s apparel sector. The rationale behind choosing this is that it has a proportionally larger number of stores than any other retail sector (West, 1992).

The data was obtained using a form of cognitive interviewing known as protocol analysis. Protocol analysis involves placing a person in a specified situation, and asking them to verbally express their thoughts as they proceed through the situation (Ericsson & Simon, 1993). Participants were fully briefed as to the nature of this study, and then tasked with exploring stores within a large suburban shopping mall, verbalising any atmospheric cues that they noticed, describing what effect (if any) it had on them, and any behavioural outcomes arising from these effects. The protocol interviews were followed by in-depth semi-structured interviews, allowing for deeper discussion of the comments made during the earlier protocol analysis.

Due to the conditions of conducting this study on-site, the researchers could not directly approach any patrons within the mall. Given this constraint, all participants were recruited off-site using a snowball sampling approach. Thus, potential participants with the correct characteristics were referred by those participants who had already taken part in the study (Thompson & Collins, 2002). All participants also had to meet the criteria of being female, and aged between 18 to 50 (consistent with the target age demographic of the mall).

In total, 18 participants were recruited to take part in the study, with an average age of 31. There was a slight age bias towards younger participants, which may have been an effect of the sampling process, with younger people potentially being more willing and/or having more time to participate in this study. Moreover, younger participants would have been likely to suggest potential participants similar in age to themselves. On average, the protocol analysis and subsequent interview took an hour to complete, with both approaches being recorded using a digital voice recorder that clipped onto each participants lapel. Notes were also taken during the protocol analysis that were later used to guide the interview discussion.

All voice-recorded data was subsequently transcribed, and the field notes were turned into expanded field notes. In total, 183 pages of transcripts were documented. From this full set of data, main themes were identified. Each transcript was coded at two levels. The highest level of coding represented main themes, which were participants’ cognitive, affective and behavioural responses towards the stores they encountered. The second level of coding
represented the specific atmospheric variables that formed the participants’ cognitive, affective and behavioural response towards each store. These variables were coded in accordance with the list of atmospheric variables identified by Turley and Milliman (2000).

The two levels of coding from each transcript were then compared across all cases, and this cross-case analysis enhances the generalisability of the findings (Miles & Huberman, 1994). The coded data was then condensed and refined so that only main themes and atmospheric variables that were common across the majority of cases remained. The common themes and atmospherics identified then formed the basis for a model to be created of how individual atmospheric variables affect consumers’ cognitive, affective and behavioural responses towards stores.

Results

Figure 1 presents the main findings of this study. Each box in the model represents a separate main theme of participants’ cognitive, affective or behavioural responses to women’s apparel store atmospherics. Atmospheric variables that create the response are listed underneath the main themes. The model also highlights how atmospheric cues are able to affect successive stages of the retail experience.

Perceived store image congruency was the initial construct that participants attempted to understand, and had a notable impact on whether or not participants would think about entering a store. The two main factors participants used to determine this were perceived target market age and perceived target market social class. If these two perceptions were aligned with the participants’ own self-image, the participant would believe the store to be congruent. Once participants had decided that the store was congruent with their own self-image, they then began to determine whether they wanted to enter the store, doing so under the condition that the atmospheric variables present positively influenced their desire to enter. Participants’ comfort in-store affected how long they would spend in-store and their browsing behaviour. However, time spent in-store and their ability to browse merchandise was found to have an interdependent relationship, where the more time spent in-store the more merchandise would be browsed, and vice versa. Moreover, the longer participants browsed merchandise, the more likely it was they would find something to try on and subsequently purchase. It was noticeable that the final two stages of the model contained the fewest atmospheric variables. This was mostly likely because each participants’ personal favour towards the merchandise played a major role in deciding whether to try on the merchandise and whether to buy it.

In total, 21 of the 57 atmospheric variables identified by Turley and Milliman (2000) were found to be evident in the model provided. The majority of the atmospheric cues identified manifested themselves in two forms that would either positively or negatively influence participants’ responses to the store environment. Many forms of atmospherics cues can be thought of as being polar opposites, such as those used on a semantic differential scale, and this was evident in this study.

Discussion

The results highlight the importance of storeowners manipulating atmospheric cues to create a store image congruent with their target market’s self-image. The results-based model shows perceived store image congruency to be the primary antecedent towards forming intentions to enter a store. This finding is consistent with the Mehrabian-Russell (1974) model, which
suggests individuals approach pleasant stimuli, but avoid unpleasant stimuli. In relating this concept to the role of self-image and store image congruence, it was found that an incongruent store image provided an unpleasant stimulus that was avoided, whereas a store image congruent with self-image provided a pleasant stimulus that would be approached.

The current study illustrates the importance of female consumers’ comfort in-store and could be closely related to creating a store environment that satisfies consumers with hedonic shopping motivations. The move, from providing the bare necessities to enable consumers to purchase merchandise, towards creating a comfortable in-store environment is a vital step in attracting consumers with hedonic shopping motivations. Donovan, Rossiter Marcoolyn, and Nesdale (1994) have previously stated that comfort in-store is essential because of the significant influence it can have on consumer purchase intentions. The research carried out in the present study identifies variables that constitute a comfortable environment, and establishes specific manipulations of these variables that retailers can employ in order for their stores to be perceived as being comfortable, thus increasing purchase probability.

To expand on the argument above of in-store comfort leading to an increased purchase probability, the model illustrates the direct relationship between comfort in-store and time spent in-store. Therefore, by increasing consumer comfort in-store, the amount of time spent in-store will also increase. The model demonstrates the relationship between consumer comfort in-store, time spent in-store and the consumer’s ability to browse. Increasing consumer comfort leads to further browsing behaviour, and consequently increases time spent in the store. Through engineering atmospheric cues in-store to positively induce the three aforementioned constructs there will be more opportunity for the consumer to find an item of merchandise that they like. Accordingly, this should lead to the final two stages of the model, where the consumer decides to try on the merchandise, and subsequently forms an intention to purchase that merchandise.

Although the model identifies atmospheric cues that can be manipulated to increase consumer purchase intentions, it is important to realise that not all elements of the model are applicable to every purchase situation within the women’s apparel retail sector. As identified in the literature, many other phenomena can affect consumer behaviour. For example, consumers who merely want a straight re-buy will already have formed the purchase intention before entering the store.

It has been noted that millions is spent each year in the retail sector designing, building and refurbishing stores (Baker, Grewal, & Levy, 1992). d’Astous (2000) suggests that by knowing the effect of environmental stimuli, retailers can use their marketing strategy to build a positive shopping experience. The model outlined identifies less than half (21 out of 57) of the atmospheric variables identified by Turley and Milliman (2000) in their comprehensive review. Although not all cues identified by Turley and Milliman (2000) were applicable in the context of women’s apparel retail stores, the study does highlight the atmospheric cues female consumers are most likely to notice and be affected by in-store. Therefore, it should be the objective of retailers in the women’s apparel retail industry to place a stronger focus on creating positive manifestations of the atmospheric variables outlined in this study. Atmospheric cues not identified in this study can be viewed as being less salient cues that do not positively or negatively influence the consumer when present or absent. If at any phase of the model atmospherics are not positively facilitating consumer perceptions and intentions toward the store, this will lead to the consumer not entering or leaving the store.
Figure 1 – The Role of Atmospheric Cues at Successive Stages of the Retail Experience
References

